Toward Real-world Text Image Forgery Localization: Structured and Interpretable Data Synthesis

Published: 18 Sept 2025, Last Modified: 30 Oct 2025NeurIPS 2025 Datasets and Benchmarks Track posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Text Image Forgery Localization, Data Synthesis, Structured, Interpretable
Abstract: Existing Text Image Forgery Localization (T-IFL) methods often suffer from poor generalization due to the limited scale of real-world datasets and the distribution gap caused by synthetic data that fails to capture the complexity of real-world tampering. To tackle this issue, we propose Fourier Series-based Tampering Synthesis (FSTS), a structured and interpretable framework for synthesizing tampered text images. FSTS first collects 16,750 real-world tampering instances from five representative tampering types, using a structured pipeline that records human-performed editing traces via multi-format logs (e.g., video, PSD, and editing logs). By analyzing these collected parameters and identifying recurring behavioral patterns at both individual and population levels, we formulate a hierarchical modeling framework. Specifically, each individual tampering parameter is represented as a compact combination of basis operation–parameter configurations, while the population-level distribution is constructed by aggregating these behaviors. Since this formulation draws inspiration from the Fourier series, it enables an interpretable approximation using basis functions and their learned weights. By sampling from this modeled distribution, FSTS synthesizes diverse and realistic training data that better reflect real-world forgery traces. Extensive experiments across four evaluation protocols demonstrate that models trained with FSTS data achieve significantly improved generalization on real-world datasets. Dataset is available at \href{https://github.com/ZeqinYu/FSTS}{Project Page}.
Croissant File: json
Dataset URL: https://www.kaggle.com/datasets/masofish/neurips-2025-fsts3/data
Code URL: https://github.com/ZeqinYu/FSTS
Supplementary Material: zip
Primary Area: Evaluation (e.g., data collection methodology, data processing methodology, data analysis methodology, meta studies on data sources, extracting signals from data, replicability of data collection and data analysis and validity of metrics, validity of data collection experiments, human-in-the-loop for data collection, human-in-the-loop for data evaluation)
Submission Number: 2554
Loading