Improving Preference Alignment of LLM with Inference-Free Self-Refinement

ACL ARR 2025 May Submission4853 Authors

20 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Large language models (LLMs) develop the in-context learning capability through pretraining and instruction tuning, enabling task adaptation without parameter updates. Self-refinement is a manifestation of this capability, which allows LLMs to iteratively refine the output using self-generated feedback. However, empirical observations reveal Inference-Free Self-Refinement (IFSR) in preference alignment: LLMs generate preference-improved output via fixed instructions, requiring no specific feedback, even no initial responses. There are two key components of the IFSR in preference alignment. The refining instruction is a fixed instruction that constrains the output distribution from a preference-semantic perspective. During training, it facilitates joint learning of preference-related semantic representations and data distribution alignment. The pseudo reference response is constructed from paired preference data and serves as a demonstration to guide the output distribution. It mitigates off-policy distributional bias while enhancing token-level preference learning in training. Experiments across multiple datasets demonstrate that incorporating IFSR into preference alignment yields performance improvement over 10%. Further ablation studies reveal additional characteristics and potential principles of IFSR.
Paper Type: Long
Research Area: Language Modeling
Research Area Keywords: fine-tuning, prompting, safety and alignment
Contribution Types: Model analysis & interpretability, NLP engineering experiment, Publicly available software and/or pre-trained models
Languages Studied: English
Submission Number: 4853
Loading