Keywords: Pruning, Sparse optimization.
TL;DR: We adaptively pruned pretrained transformer based on a differential inclusion.
Abstract: Large transformers have demonstrated remarkable success, making it necessary to compress these models to reduce inference costs while preserving their performance. Current compression algorithms prune transformers at fixed compression ratios, requiring a unique pruning process for each ratio, which results in high computational costs. In contrast, we propose pruning of pretrained transformers at any desired ratio within a single pruning stage, based on a differential inclusion for a mask parameter. This dynamic can generate the whole regularization solution path of the mask parameter, whose support set identifies the network structure. Therefore, the solution path identifies a Transformer weight family with various sparsity levels, offering greater flexibility and customization.In this paper, weintroduce such an effective pruning method, termed SPP (Solution Path Pruning). To achieve effective pruning, we segment the transformers into paired modules, including query-key pairs, value-projection pairs, and sequential linear layers, and apply low-rank compression to these pairs, maintaining the output structure while enabling structural compression within the inner states. Extensive experiments conducted on various well-known transformer backbones have demonstrated the efficacy of SPP.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4869
Loading