LiftedCL: Lifting Contrastive Learning for Human-Centric PerceptionDownload PDF

Published: 01 Feb 2023, 19:23, Last Modified: 22 Feb 2023, 07:48ICLR 2023 posterReaders: Everyone
Keywords: contrastive learning, human-centric perception
TL;DR: We present LiftedCL for self-supervised learning, which improves contrastive learning by leveraging 3D human structure information to learn 3D-aware human-centric representations.
Abstract: Human-centric perception targets for understanding human body pose, shape and segmentation. Pre-training the model on large-scale datasets and fine-tuning it on specific tasks has become a well-established paradigm in human-centric perception. Recently, self-supervised learning methods have re-investigated contrastive learning to achieve superior performance on various downstream tasks. When handling human-centric perception, there still remains untapped potential since 3D human structure information is neglected during the task-agnostic pre-training. In this paper, we propose the Lifting Contrastive Learning (LiftedCL) to obtain 3D-aware human-centric representations which absorb 3D human structure information. In particular, to induce the learning process, a set of 3D skeletons is randomly sampled by resorting to 3D human kinematic prior. With this set of generic 3D samples, 3D human structure information can be learned into 3D-aware representations through adversarial learning. Empirical results demonstrate that LiftedCL outperforms state-of-the-art self-supervised methods on four human-centric downstream tasks, including 2D and 3D human pose estimation (0.4% mAP and 1.8 mm MPJPE improvement on COCO 2D pose estimation and Human3.6M 3D pose estimation), human shape recovery and human parsing.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Unsupervised and Self-supervised learning
8 Replies