KNIFE: Distilling Reasoning Knowledge From Free-Text Rationales

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Supplementary Material: zip
Primary Area: representation learning for computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: free-text rationales, explanation tuning, explanation-based learning, knowledge distillation, language model, question answering, text classification, reasoning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose KNIFE, a method for distilling general reasoning knowledge from free-text rationales into language models.
Abstract: Language models (LMs) have yielded impressive results on many language reasoning tasks, but their unexpected errors raise doubts about their reasoning abilities. In light of this, there is growing interest in finetuning/prompting LMs with both task instances and their associated free-text rationales (FTRs), which explain the correct reasoning process for predicting the correct task output (i.e., how to be "right for the right reasons"). However, existing finetuning methods fail to improve LM performance, while prompting needs prohibitively large (i.e., >50B) LMs to work well. We propose KNIFE, which shows that reasoning knowledge can be effectively distilled from FTRs into a small (i.e., <1B) LM and improve the LM's performance. First, KNIFE finetunes a teacher LM (given task input and FTR) to predict the task output, transferring reasoning knowledge from the FTRs to the teacher's hidden states. Second, KNIFE finetunes a student LM (given task input only) such that its hidden states are aligned with the teacher's. Thus, the student is endowed with reasoning knowledge but can be used for inference without direct FTR input. On two question-answering benchmarks, KNIFE outperforms various finetuning and prompting baselines in fully-supervised and low-resource settings. Also, we observe that FTR quality is a crucial factor in KNIFE's performance.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6075
Loading