Recurrent Exploration Networks for Recommender SystemsDownload PDF


28 Sep 2020 (modified: 12 Nov 2020)ICLR 2021 Conference Blind SubmissionReaders: Everyone
  • Keywords: Recommender Systems, Recurrent Neural Networks, Deep Learning
  • Abstract: Recurrent neural networks have proven effective in modeling sequential user feedbacks for recommender systems. However, they usually focus solely on item relevance and fail to effectively explore diverse items for users, therefore harming the system performance in the long run. To address this problem, we propose a new type of recurrent neural networks, dubbed recurrent exploration networks (REN), to jointly perform representation learning and effective exploration in the latent space. REN tries to balance relevance and exploration while taking into account the uncertainty in the representations. Our theoretical analysis shows that REN can preserve the rate-optimal sublinear regret (Chu et al., 2011) even when there exists uncertainty in the learned representations. Our empirical study demonstrates that REN can achieve satisfactory long-term rewards on both synthetic and real-world recommendation datasets, outperforming state-of-the-art models.
  • One-sentence Summary: A model that balances relevance and exploration while taking into account the uncertainty in the representations for RNN-based recommender systems.
  • Supplementary Material: zip
  • Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
11 Replies