Keywords: Spatio-Temporal Video Grounding
Abstract: Transformer has attracted increasing interest in spatio-temporal video grounding, or STVG, owing to its end-to-end pipeline and promising result. Existing Transformer-based STVG approaches often leverage a set of object queries, which are initialized simply using zeros and then gradually learn target position information via iterative interactions with multimodal features, for spatial and temporal localization. Despite simplicity, these zero object queries, due to lacking target-specific cues, are hard to learn discriminative target information from interactions with multimodal features in the complicated scenarios (e.g., with distractors or occlusion), resulting in degradation. Addressing this, we introduce a novel Target-Aware Transformer for STVG (TA-STVG), which seeks to adaptively generate object queries via exploring target-specific cues from the given video-text pair, for improving STVG. The key lies in two simple yet effective modules, comprising text-guided temporal sampling (TTS) and attribute-aware spatial activation (ASA), working in a cascade. The former focuses on selecting target-relevant temporal cues from a video utilizing holistic text information, while the latter aims at further exploiting the fine-grained visual attribute information of the object from previous target-aware temporal cues, which is applied for object query initialization. Compared to existing methods leveraging zero-initialized queries, object queries in our TA-STVG, directly generated from a given video-text pair, naturally carry target-specific cues, making them adaptive and better interact with multimodal features for learning more discriminative information to improve STVG. In our experiments on three benchmarks, including HCSTVG-v1/-v2 and VidSTG, TA-STVG achieves state-of-the-art performance and largely outperforms the baseline, validating its efficacy. Code will be released.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 284
Loading