Convergence Analysis of the Wasserstein Proximal Algorithm beyond Convexity

ICLR 2025 Conference Submission7804 Authors

26 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: optimization in Wasserstein space, proximal algorithm, gradient flow, sampling, mean-field
Abstract: The proximal algorithm is a powerful tool to minimize nonlinear and nonsmooth functionals in a general metric space. Motivated by the recent progress in studying the training dynamics of the noisy gradient descent algorithm on two-layer neural networks in the mean-field regime, we provide in this paper a simple and self-contained analysis for the convergence of the general-purpose Wasserstein proximal algorithm without assuming geodesic convexity on the objective functional. Under a natural Wasserstein analog of the Euclidean Polyak-{\L}ojasiewicz inequality, we show that the proximal algorithm achieves an unbiased and linear convergence rate. Our convergence rate improves upon existing rates of the proximal algorithm for solving Wasserstein gradient flows under strong geodesic convexity. We also extend our analysis to the inexact proximal algorithm for geodesically semiconvex objectives. In our numerical experiments, proximal training demonstrates a faster convergence rate than the noisy gradient descent algorithm on mean-field neural networks.
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7804
Loading