SMART: Self-Aware Agent for Tool Overuse Mitigation

ACL ARR 2025 February Submission2714 Authors

15 Feb 2025 (modified: 09 May 2025)ACL ARR 2025 February SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Current Large Language Model (LLM) agents demonstrate strong reasoning and tool use capabilities, but often lack self-awareness, failing to balance these approaches effectively. This imbalance leads to **Tool Overuse**, where models unnecessarily rely on external tools for tasks solvable with parametric knowledge, increasing computational overhead. Inspired by human metacognition, we introduce **SMART** (Strategic Model-Aware Reasoning with Tools), a paradigm that enhances an agent’s self-awareness to optimize task handling and reduce tool overuse. To support this paradigm, we introduce **SMART-ER**, a dataset spanning three domains, where reasoning alternates between parametric knowledge and tool-dependent steps, with each step enriched by rationales explaining when tools are necessary. Through supervised training, we develop **SMARTAgent**, a family of models that dynamically balance parametric knowledge and tool use. Evaluations show that SMARTAgent reduces tool use by 24% while improving performance by over 37%, enabling 7B-scale models to match its 70B counterpart and GPT-4. Additionally, SMARTAgent generalizes to out-of-distribution test data like GSM8K and MINTQA, maintaining accuracy with just one-fifth the tool calls. These highlight the potential of strategic tool use to enhance reasoning, mitigate overuse, and bridge the gap between model size and performance, advancing intelligent and resource-efficient agent designs.
Paper Type: Long
Research Area: NLP Applications
Research Area Keywords: LLM Agent, Agent Reasoning, Tool Overuse
Contribution Types: Model analysis & interpretability, NLP engineering experiment, Publicly available software and/or pre-trained models, Data resources, Data analysis
Languages Studied: English
Submission Number: 2714
Loading