Dataset and Lessons Learned from the 2024 SaTML LLM Capture-the-Flag Competition

Published: 26 Sept 2024, Last Modified: 13 Nov 2024NeurIPS 2024 Track Datasets and Benchmarks SpotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: competition, prompt injection, dataset, large language models, LLM, prompt extraction
TL;DR: Competition report from the SaTML LLM Capture-the-Flag Competition, including a prompt injection dataset with over 137k of multi-turn chats.
Abstract: Large language model systems face significant security risks from maliciously crafted messages that aim to overwrite the system's original instructions or leak private data. To study this problem, we organized a capture-the-flag competition at IEEE SaTML 2024, where the flag is a secret string in the LLM system prompt. The competition was organized in two phases. In the first phase, teams developed defenses to prevent the model from leaking the secret. During the second phase, teams were challenged to extract the secrets hidden for defenses proposed by the other teams. This report summarizes the main insights from the competition. Notably, we found that all defenses were bypassed at least once, highlighting the difficulty of designing a successful defense and the necessity for additional research to protect LLM systems. To foster future research in this direction, we compiled a dataset with over 137k multi-turn attack chats and open-sourced the platform.
Supplementary Material: pdf
Submission Number: 599
Loading