Re-calibrating Feature Attributions for Model InterpretationDownload PDF

Published: 01 Feb 2023, Last Modified: 14 Apr 2023ICLR 2023 notable top 25%Readers: Everyone
Keywords: Feature Attribution, Explainable Artifical Intelligence
Abstract: The ability to interpret machine learning models is critical for high-stakes applications. Due to its desirable theoretical properties, path integration is a widely used scheme for feature attribution to interpret model predictions. However, the methods implementing this scheme currently rely on absolute attribution scores to eventually provide sensible interpretations. This not only contradicts the premise that the features with larger attribution scores are more relevant to the model prediction, but also conflicts with the theoretical settings for which the desirable properties of the attributions are proven. We address this by devising a method to first compute an appropriate reference for the path integration scheme. This reference further helps in identifying valid interpolation points on a desired integration path. The reference is computed in a gradient ascending direction on the model's loss surface, while the interpolations are performed by analyzing the model gradients and variations between the reference and the input. The eventual integration is effectively performed along a non-linear path. Our scheme can be incorporated into the existing integral-based attribution methods. We also devise an effective sampling and integration procedure that enables employing our scheme with multi-reference path integration efficiently. We achieve a marked performance boost for a range of integral-based attribution methods on both local and global evaluation metrics by enhancing them with our scheme. Our extensive results also show improved sensitivity, sanity preservation and model robustness with the proposed re-calibration of the attribution techniques with our method.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
TL;DR: We propose a re-calibration technique to calibrate existing integral-based attribution methods with valid references for a consistent explanation.
Supplementary Material: zip
11 Replies

Loading