The Number of Trials Matters in Infinite-Horizon General-Utility Markov Decision Processes

Published: 17 Jul 2025, Last Modified: 06 Sept 2025EWRL 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Reinforcement learning, Sequential decision making
Abstract: The general-utility Markov decision processes (GUMDPs) framework generalizes the MDPs framework by considering objective functions that depend on the frequency of visitation of state-action pairs induced by a given policy. In this work, we contribute with the first analysis on the impact of the number of trials, i.e., the number of randomly sampled trajectories, in infinite-horizon GUMDPs. We show that, as opposed to standard MDPs, the number of trials plays a key-role in infinite-horizon GUMDPs and the expected performance of a given policy depends, in general, on the number of trials. We consider both discounted and average GUMDPs, where the objective function depends, respectively, on discounted and average frequencies of visitation of state-action pairs. First, we study policy evaluation under discounted GUMDPs, proving lower and upper bounds on the mismatch between the finite and infinite trials formulations for GUMDPs. Second, we address average GUMDPs, studying how different classes of GUMDPs impact the mismatch between the finite and infinite trials formulations. Third, we provide a set of empirical results to support our claims, highlighting how the number of trajectories and the structure of the underlying GUMDP influence policy evaluation.
Confirmation: I understand that authors of each paper submitted to EWRL may be asked to review 2-3 other submissions to EWRL.
Serve As Reviewer: ~Pedro_Pinto_Santos1
Track: Fast Track: published work
Publication Link: pedro.pinto.santos@tecnico.ulisboa.pt
Submission Number: 13
Loading