PSO-Merging: Merging Models Based on Particle Swarm Optimization

ICLR 2026 Conference Submission15321 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Model Fusion, Large Language Models
Abstract: Model merging has emerged as an efficient strategy for constructing multitask models by integrating the strengths of multiple available expert models, thereby reducing the need to fine-tune a pre-trained model for all the tasks from scratch. Existing data-independent methods struggle with performance limitations due to the lack of data-driven guidance. In contrast, data-driven approaches, while effective, face key challenges: gradient-based methods are computationally expensive, limiting their practicality for merging large expert models, whereas existing gradient-free methods often fail to achieve satisfactory results within a limited number of optimization steps. To address these limitations, this paper introduces PSO-Merging, a novel data-driven merging method based on the Particle Swarm Optimization (PSO). In this approach, we initialize the particle swarm with a pre-trained model, expert models, and sparsified expert models. We then perform multiple iterations, with the final global best particle serving as the merged model. Experimental results on different language models show that PSO-Merging generally outperforms baseline merging methods, offering a more efficient and scalable solution for model merging.
Primary Area: other topics in machine learning (i.e., none of the above)
Submission Number: 15321
Loading