Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs

ICLR 2025 Conference Submission161 Authors

13 Sept 2024 (modified: 13 Oct 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: LLM, PEFT, LoRA
Abstract: Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks. However, the enormous size of LLMs poses significant challenges in terms of computational complexity and resource requirements. Low-Rank Adaptation (LoRA) has emerged as a promising solution. However, there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum. In this work, we propose eXtreme Gradient Boosting LoRA (XGBLoRA), a novel framework that bridges this gap by leveraging the power of ensemble learning. Inspired by gradient boosting, XGBLoRA iteratively learns and merges a sequence of LoRA adaptations to refine model predictions. It achieves better performance than the standard LoRA, while enjoying the computational efficiency of rank-1 adaptations. We provide theoretical analysis to show the convergence and optimality of our approach, and conduct extensive experiments on a range of natural language processing tasks. The results demonstrate that XGBLoRA consistently outperforms standard LoRA and achieves performance comparable to full fine-tuning with significantly fewer trainable parameters. This work advances parameter-efficient fine-tuning for LLMs, and offers a promising solution for adapting LLMs to downstream tasks while optimizing performance and efficiency.
Supplementary Material: pdf
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 161
Loading