Improving Subgraph Representation Learning via Multi-View AugmentationDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Graph Learning, Subgraph Representation Learning, Graph Data Augmentation, Multi-view Augmentation
TL;DR: We develop a novel multi-view augmentation mechanism to improve subgraph representation learning models and thus the accuracy of downstream prediction tasks.
Abstract: Subgraph representation learning based on Graph Neural Network (GNN) has exhibited broad applications in scientific advancements, such as predictions of molecular structure-property relationships and collective cellular function. In particular, graph augmentation techniques have shown promising results in improving graph-based and node-based classification tasks. Still, they have rarely been explored in the existing GNN-based subgraph representation learning studies. In this study, we develop a novel multi-view augmentation mechanism to improve subgraph representation learning models and thus the accuracy of downstream prediction tasks. Our augmentation technique creates multiple variants of subgraphs and embeds these variants into the original graph to achieve highly improved training efficiency, scalability, and accuracy. Benchmark experiments on several real-world biological and physiological datasets demonstrate the superiority of our proposed multi-view augmentation techniques in subgraph representation learning.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
4 Replies

Loading