Keywords: One-step Generation, Diffusion Models, Koopman Operators, Interpretable Image Synthesis
TL;DR: We propose explicit and interpretable one-step generation framework that retains the advantages of traditional diffusion models, such as access to intermediate states and fine-grained control, while enabling fast sampling.
Abstract: Diffusion models have achieved impressive success in high-fidelity image generation but suffer from slow sampling due to their inherently iterative denoising process. While recent one-step methods accelerate inference by learning direct noise-to-image mappings, they sacrifice the interpretability and fine-grained control intrinsic to diffusion dynamics, key advantages that enable applications like editable generation. To resolve this dichotomy, we introduce **Hierarchical Koopman Diffusion**, a novel framework that achieves both one-step sampling and interpretable generative trajectories. Grounded in Koopman operator theory, our method lifts the nonlinear diffusion dynamics into a latent space where evolution is governed by globally linear operators, enabling closed-form trajectory solutions. This formulation not only eliminates iterative sampling but also provides full access to intermediate states, allowing manual intervention during generation. To model the multi-scale nature of images, we design a hierarchical architecture that disentangles generative dynamics across spatial resolutions via scale-specific Koopman subspaces, capturing coarse-to-fine details systematically. We empirically show that the Hierarchical Koopman Diffusion not only achieves competitive one-step generation performance but also provides a principled mechanism for interpreting and manipulating the generative process through spectral analysis. Our framework bridges the gap between fast sampling and interpretability in diffusion models, paving the way for explainable image synthesis in generative modeling.
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 3435
Loading