Improved knowledge distillation by utilizing backward pass knowledge in neural networksDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Withdrawn SubmissionReaders: Everyone
Keywords: Deep Neural Networks, Knowledge Distillation, Natural Language Processing
Abstract: Knowledge distillation (KD) is one of the prominent techniques for model compression. In this method, the knowledge of a large network (teacher) is distilled into a model (student) with usually significantly fewer parameters. KD tries to better-match the output of the student model to that of the teacher model based on the knowledge extracts from the forward pass of the teacher network. Although conventional KD is effective for matching the two networks over the given data points, there is no guarantee that these models would match in other areas for which we do not have enough training samples. In this work, we address that problem by generating new auxiliary training samples based on extracting knowledge from the backward pass of the teacher in the areas where the student diverges greatly from the teacher. We compute the difference between the teacher and the student and generate new data samples that maximize the divergence. This is done by perturbing data samples in the direction of the gradient of the difference between the student and the teacher. Augmenting the training set by adding this auxiliary improves the performance of KD significantly and leads to a closer match between the student and the teacher. Using this approach, when data samples come from a discrete domain, such as applications of natural language processing (NLP) and language understanding, is not trivial. However, we show how this technique can be used successfully in such applications. We studied the effect of the proposed method on various tasks in different domains, including images and NLP tasks with considerably smaller student networks. The results of our experiments, when compared with the original KD, show 4% improvement on MNIST with a student network that is 160 times smaller, 1% improvement on a CIFAR-10 dataset with a student that is 9 times smaller, and an average 1.5% improvement on the GLUE benchmark with a distilroBERTa-base student.
One-sentence Summary: This paper, presents a new idea to improve the performance of existing knowledge distillation methods by enriching the train data samples
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Reviewed Version (pdf): https://openreview.net/references/pdf?id=I-d0x7Dc-g
5 Replies

Loading