Keywords: innate values, reinforcement learning, rationality
Abstract: Innate values describe agents' intrinsic motivations, which reflect their inherent interests and preferences for pursuing goals and drive them to develop diverse skills that satisfy their various needs. Traditional reinforcement learning (RL) is learning from interaction based on the environment's feedback rewards. However, in real scenarios, the rewards are generated by agents' innate value systems, which differ vastly from individuals based on their needs and requirements. In other words, considering the AI agent as a self-organizing system, developing its awareness through balancing internal and external utilities based on its needs in different tasks is a crucial problem for individuals learning to support others and integrate community with safety and harmony in the long term. To address this gap, we propose a new RL model termed innate-values-driven RL (IVRL) based on combined motivations' models and expected utility theory to mimic its complex behaviors in the evolution through decision-making and learning. Then, we introduce two IVRL-based models: IV-DQN and IV-A2C. By comparing them with benchmark algorithms such as DQN, DDQN, A2C, and PPO in the Role-Playing Game (RPG) reinforcement learning test platform VIZDoom, we demonstrated that the IVRL-based models can help the agent rationally organize various needs, achieve better performance effectively.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5166
Loading