Lightweight MSA Design Advances Protein Folding From Evolutionary Embeddings

ICLR 2026 Conference Submission12658 Authors

18 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Deep learning, MSA generation, Protein structure prediction, Protein language model
Abstract: Protein structure prediction often hinges on multiple sequence alignments (MSAs), which underperform on low-homology and orphan proteins. We introduce PLAME, a lightweight MSA design framework that leverages evolutionary embeddings from pretrained protein language models to generate MSAs that better support downstream folding. PLAME couples these embeddings with a conservation–diversity loss that balances agreement on conserved positions with coverage of plausible sequence variation. Beyond generation, we develop (i) an MSA selection strategy to filter high-quality candidates and (ii) a sequence-quality metric that is complementary to depth-based measures and predictive of folding gains. On AlphaFold2 low-homology/orphan benchmarks, PLAME delivers state-of-the-art improvements in structure accuracy (e.g., lDDT/TM-score), with consistent gains when paired with AlphaFold3. Ablations isolate the benefits of the selection strategy, and case studies elucidate how MSA characteristics shape AlphaFold confidence and error modes. Finally, we show PLAME functions as a lightweight adapter, enabling ESMFold to approach AlphaFold2-level accuracy while retaining ESMFold-like inference speed. PLAME thus provides a practical path to high-quality folding for proteins lacking strong evolutionary neighbors.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Submission Number: 12658
Loading