AnyBCQ: Hardware Efficient Flexible Binary-Coded Quantization for Multi-Precision LLMs

ICLR 2026 Conference Submission12936 Authors

18 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: LLM, Quantization, Anyprecision
Abstract: The deployment of large language models (LLMs) is increasingly constrained by memory and latency bottlenecks, motivating the need for quantization techniques that flexibly balance accuracy and efficiency. Recent work has introduced multi-precision models, which enable inference at multiple precisions within a single model depending on runtime constraints. To support such flexibility, quantized weights are often stored as bit-planes, where hardware efficiency improves when the compute operates directly at the bit-plane level and activates only the precision required by each request. In this work, we present AnyBCQ, a hardware-friendly multi-precision extension of Binary-Coded Quantization (BCQ) that supports direct bit-plane operations. By representing weights as binary bit-planes with corresponding scale factors, AnyBCQ enables bit-plane–level computation and maps naturally to accelerator-friendly, bit-parallel arithmetic. Our progressive precision expansion mechanism incrementally refines scaling factors while reusing previously assigned binary codes, yielding monotonic improvements in accuracy as additional bits are enabled. We further co-design a specialized kernel that exploits the BCQ structure to support dynamic per-request precision selection with negligible overhead. Experiments on recent LLMs demonstrate that AnyBCQ significantly narrows the accuracy drop in the low-bit regime (e.g. 2-bit), remains competitive at higher precision, and achieves throughput gains of up to $3.0\times$ over half precision and $1.2\times$ over state-of-the-art multi-precision methods. By aligning algorithmic flexibility with hardware efficiency, AnyBCQ provides a practical foundation for multi-precision LLM deployment across diverse service-level objectives.
Supplementary Material: zip
Primary Area: other topics in machine learning (i.e., none of the above)
Submission Number: 12936
Loading