Keywords: prompt learning, CLIP, near-OOD
Abstract: Prompt learning has shown to be an efficient and effective fine-tuning method for vision-language models like CLIP. While numerous studies have focused on the generalisation of these models in few-shot classification, their capability in near out-of-distribution (OOD) detection has been overlooked. A few recent works have highlighted the promising performance of prompt learning in far OOD detection. However, the more challenging task of few-shot near OOD detection has not yet been addressed. In this study, we investigate the near OOD detection capabilities of prompt learning models and observe that commonly used OOD scores have limited performance in near OOD detection. To enhance the performance, we propose a fast and simple post-hoc method that complements existing logit-based scores and can be easily applied to any prompt learning model without change in architecture or model re-training while keeping the same classification accuracy. Our method boosts existing prompt learning methods' near OOD detection performance in AUROC by up to 11.67% with minimal computational cost. Comprehensive empirical evaluations across 13 datasets and 8 models demonstrate the effectiveness and adaptability of our method.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6865
Loading