Abstract: This paper introduces UnSeenTimeQA, a novel data contamination-free time-sensitive question-answering (TSQA) benchmark. It differs from existing TSQA benchmarks by avoiding web-searchable queries grounded in the real-world. We present a series of time-sensitive event scenarios based on synthetically generated facts. It requires large language models (LLMs) to engage in genuine temporal reasoning without depending on the factual knowledge acquired during the pre-training phase. We designed three types of time-sensitive questions to test LLMs' temporal reasoning abilities over sequential and parallel event occurrences. Our evaluation of five LLMs on synthetic fact-based TSQA reveals mixed results: while they perform well on simpler subsets, their overall performance remains inferior as compared to real-world fact-based TSQA. Error analysis of LLM-generated reasoning chains indicates that LLMs face difficulties in reasoning over long-range event dependencies and parallel event timelines that unfold concurrently.
Paper Type: Long
Research Area: Resources and Evaluation
Research Area Keywords: NLP datasets, benchmarking, automatic creation and evaluation of language resources
Contribution Types: Data resources
Languages Studied: English
Submission Number: 473
Loading