Quantifying CBRN Risk in Frontier Models

Published: 29 Sept 2025, Last Modified: 14 Oct 2025NeurIPS 2025 - Reliable ML WorkshopEveryoneRevisionsBibTeXCC BY 4.0
Keywords: CBRN Risk, LLM Safety
Abstract: Frontier Large Language Models (LLMs) pose unprecedented dual-use risks through the potential proliferation of chemical, biological, radiological, and nuclear (CBRN) weapons knowledge. We present the first comprehensive evaluation of 10 leading commercial LLMs against both a novel 200-prompt CBRN dataset and a 180-prompt subset of the FORTRESS benchmark, using a rigorous three-tier attack methodology. Our findings expose critical safety vulnerabilities: Deep Inception attacks achieve 86.0\% success versus 33.8\% for direct requests, demonstrating superficial filtering mechanisms; Model safety performance varies dramatically from 2\% (claude-opus-4) to 96\% (mistral-small-latest) attack success rates; and eight models exceed 70\% vulnerability when asked to enhance dangerous material properties. We identify fundamental brittleness in current safety alignment, where simple prompt engineering techniques bypass safeguards for dangerous CBRN information. These results challenge industry safety claims and highlight urgent needs for standardized evaluation frameworks, transparent safety metrics, and more robust alignment techniques to mitigate catastrophic misuse risks while preserving beneficial capabilities.
Submission Number: 71
Loading