Jailbreak-AudioBench: In-Depth Evaluation and Analysis of Jailbreak Threats for Large Audio Language Models
Keywords: Large Audio Language Models; Jailbreak Attack
Abstract: Large Language Models (LLMs) demonstrate impressive zero-shot performance across a wide range of natural language processing tasks. Integrating various modality encoders further expands their capabilities, giving rise to Multimodal Large Language Models (MLLMs) that process not only text but also visual and auditory modality inputs. However, these advanced capabilities may also pose significant safety problems, as models can be exploited to generate harmful or inappropriate content through jailbreak attack. While prior work has extensively explored how manipulating textual or visual modality inputs can circumvent safeguards in LLMs and MLLMs, the vulnerability of audio-specific Jailbreak on Large Audio-Language Models (LALMs) remains largely underexplored. To address this gap, we introduce \textbf{Jailbreak-AudioBench}, which consists of the Toolbox, curated Dataset, and comprehensive Benchmark. The Toolbox supports not only text-to-audio conversion but also various editing techniques for injecting audio hidden semantics. The curated Dataset provides diverse explicit and implicit jailbreak audio examples in both original and edited forms. Utilizing this dataset, we evaluate multiple state-of-the-art LALMs and establish the most comprehensive Jailbreak benchmark to date for audio modality. Finally, Jailbreak-AudioBench establishes a foundation for advancing future research on LALMs safety alignment by enabling the in-depth exposure of more powerful jailbreak threats, such as query-based audio editing, and by facilitating the development of effective defense mechanisms.
Croissant File: zip
Dataset URL: https://huggingface.co/datasets/researchtopic/Jailbreak-AudioBench
Code URL: https://github.com/Researchtopic/Code-Jailbreak-AudioBench
Supplementary Material: pdf
Primary Area: Applications of Datasets & Benchmarks for in speech and audio
Submission Number: 557
Loading