Differentially Private Optimization on Large Model at Small CostDownload PDF

Published: 01 Feb 2023, Last Modified: 12 Mar 2024Submitted to ICLR 2023Readers: Everyone
Keywords: deep learning, differential privacy, complexity, computation efficiency
TL;DR: We propose a new implementation of differentially private deep learning, that substantially improves speed and memory cost to match standard non-private training.
Abstract: Differentially private (DP) optimization is the standard paradigm to learn large neural networks that are accurate and privacy-preserving. The computational cost for DP deep learning, however, is notoriously heavy due to the per-sample gradient clipping. Existing DP implementations are $2-1000\times$ more costly in time and space complexity than the standard (non-private) training. In this work, we develop a novel Book-Keeping (BK) technique that implements existing DP optimizers (thus achieving the same accuracy), with a substantial improvement on the computational cost. Specifically, BK enables DP training on large models and high dimensional data to be roughly as efficient as the standard training, whereas previous DP algorithms can be inefficient or incapable of training due to memory error. The computational advantage of BK is supported by the complexity analysis as well as extensive experiments on vision and language tasks. Our implementation achieves state-of-the-art (SOTA) accuracy with very small extra cost: on GPT2 and at the same memory cost, BK has 1.0$\times$ the time complexity of the standard training (0.75$\times$ training speed in practice), and 0.6$\times$ the time complexity of the most efficient DP implementation (1.24$\times$ training speed in practice). We will open-source the codebase for the BK algorithm.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/arxiv:2210.00038/code)
7 Replies

Loading