Patch-Prompt Aligned Bayesian Prompt Tuning for Vision-Language Models

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Bayesian prompt learning; pre-trained vision language model
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We introduce a Bayesian prompt learning that learns class-specific stochastic prompts for CLIP.
Abstract: For downstream applications of vision-language pre-trained models, there has been significant interest in constructing effective prompts. Existing works on prompt engineering, which either require laborious manual designs or optimize the prompt tuning as a point estimation problem, may fail to describe diverse characteristics of categories and limit their applications. We introduce a Bayesian probabilistic resolution to prompt tuning, where the label-specific stochastic prompts are generated hierarchically by first sampling a latent vector from an underlying distribution and then employing a lightweight generative model. Importantly, we semantically regularize the tuning process by minimizing the statistic distance between the visual patches and linguistic prompts, which pushes the stochastic label representations to faithfully capture diverse visual concepts, instead of overfitting the training categories. We evaluate the effectiveness of our approach on four tasks: few-shot image recognition, base-to-new generalization, dataset transfer learning, and domain shifts. Extensive results on over 15 datasets show promising transferability and generalization performance of our proposed model, both quantitatively and qualitatively.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4535
Loading