Gumbel-Softmax Discretization Constraint, Differentiable IDS Channel, and an IDS-Correcting Code for DNA Storage
Keywords: Gumbel-Softmax, IDS Channel, IDS-correcting Code, DNA Storage
Abstract: Insertion, deletion, and substitution (IDS) error-correcting codes have garnered increased attention with recent advancements in DNA storage technology. However, a universal method for designing IDS-correcting codes across varying channel settings remains underexplored. We present an autoencoder-based method, THEA-code, aimed at efficiently generating IDS-correcting codes for complex IDS channels. In the work, a Gumbel-Softmax discretization constraint is proposed to discretize the features of the autoencoder, and a simulated differentiable IDS channel is developed as a differentiable alternative for IDS operations. These innovations facilitate the successful convergence of the autoencoder, resulting in channel-customized IDS-correcting codes with commendable performance across complex IDS channels.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4142
Loading