Landscape of Thoughts: Visualizing the Reasoning Process of Large Language Models

ICLR 2026 Conference Submission15309 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Models, Visualization
TL;DR: We introduce a visualization tool for users to inspect the reasoning paths of chain-of-thought and its derivatives on any multi-choice dataset
Abstract: Numerous applications of large language models (LLMs) rely on their ability to perform step-by-step reasoning. However, the reasoning behavior of LLMs remains poorly understood, posing challenges to research, development, and safety. To address this gap, we introduce landscape of thoughts (LoT), the first landscape visualization tool to inspect the reasoning trajectories with certain reasoning methods on any multi-choice dataset. We represent the textual states in a trajectory as numerical features that quantify the states' distances to the answer choices. These features are then visualized in two-dimensional plots using t-SNE. Qualitative and quantitative analysis with the landscape of thoughts effectively distinguishes between strong and weak models, correct and incorrect answers, as well as different reasoning tasks. It also uncovers undesirable reasoning patterns, such as low consistency and high uncertainty. Additionally, users can adapt LoT to a model that predicts the property they observe. We showcase this advantage by adapting LoT to a lightweight verifier that evaluates the correctness of trajectories. Empirically, this verifier boosts the reasoning accuracy and the test-time scaling effect.
Primary Area: foundation or frontier models, including LLMs
Submission Number: 15309
Loading