Spatio-Temporal Approximation: A Training-Free SNN Conversion for Transformers

Published: 16 Jan 2024, Last Modified: 05 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Spiking Neural Network, Spike Calibration, Transformer
Submission Guidelines: I certify that this submission complies with the submission instructions as described on
TL;DR: This paper proposes the first approach to convert pretrained Transformers to spiking neural networks without retraining or finetuning.
Abstract: Spiking neural networks (SNNs) are energy-efficient and hold great potential for large-scale inference. Since training SNNs from scratch is costly and has limited performance, converting pretrained artificial neural networks (ANNs) to SNNs is an attractive approach that retains robust performance without additional training data and resources. However, while existing conversion methods work well on convolution networks, emerging Transformer models introduce unique mechanisms like self-attention and test-time normalization, leading to non-causal non-linear interactions unachievable by current SNNs. To address this, we approximate these operations in both temporal and spatial dimensions, thereby providing the first SNN conversion pipeline for Transformers. We propose \textit{Universal Group Operators} to approximate non-linear operations spatially and a \textit{Temporal-Corrective Self-Attention Layer} that approximates spike multiplications at inference through an estimation-correction approach. Our algorithm is implemented on a pretrained ViT-B/32 from CLIP, inheriting its zero-shot classification capabilities, while improving control over conversion losses. To our knowledge, this is the first direct training-free conversion of a pretrained Transformer to a purely event-driven SNN, promising for neuromorphic hardware deployment.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: applications to neuroscience & cognitive science
Submission Number: 1774