Improving Continuous Normalizing Flows using a Multi-Resolution FrameworkDownload PDF

Published: 15 Jun 2021, Last Modified: 05 May 2023INNF+ 2021 posterReaders: Everyone
Keywords: generative models, continuous normalizing flows
TL;DR: We introduce a multi-resolution variant to continuous normalizing flows
Abstract: Recent work has shown that Continuous Normalizing Flows (CNFs) can serve as generative models of images with exact likelihood calculation and invertible generation/density estimation. In this work we introduce a Multi-Resolution variant of such models (MRCNF). We introduce a transformation between resolutions that allows for no change in the log likelihood. We show that this approach yields comparable likelihood values for various image datasets, with improved performance at higher resolutions, with fewer parameters, using only 1 GPU.
3 Replies