Keywords: counterfactual explanations, explanation robustness, data shift, robustness to data shift
TL;DR: We train a model and counterfactual explanation (CE) generator in a way that preserves CE robustness to future model shifts
Abstract: Counterfactual explanations (CEs) enhance the interpretability of machine learning models by describing what changes to an input are necessary to change its prediction to a desired class. These explanations are commonly used to guide users' actions, e.g., by describing how a user whose loan application was denied can be approved for a loan in the future. Existing approaches generate CEs by focusing on a single, fixed model, and do not provide any formal guarantees on the CEs' future validity. When models are updated periodically to account for data shift, if the generated CEs are not robust to the shifts, users' actions may no longer have the desired impacts on their predictions. This paper introduces VeriTraCER, an approach that jointly trains a classifier and an explainer to explicitly consider the robustness of the generated CEs to small model shifts. VeriTraCER optimizes over a carefully designed loss function that ensures the verifiable robustness of CEs to local model updates, thus providing deterministic guarantees to CE validity. Our empirical evaluation demonstrates that VeriTraCER generates CEs that (1) are verifiably robust to small model updates and (2) display competitive robustness to state-of-the-art approaches in handling empirical model updates including random initialization, leave-one-out, and distribution shifts.
Primary Subject Area: Data-centric explainable AI
Paper Type: Research paper: up to 8 pages
Participation Mode: In-person
Confirmation: I have read and agree with the workshop's policy on behalf of myself and my co-authors.
Submission Number: 42
Loading