Multiple Descents in Unsupervised Auto-Encoders: The Role of Noise, Domain Shift and Anomalies

22 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: double descent, unsupervised learning, autoencoders, domain adaptation, bias-variance curve, anomalies
Abstract: The phenomenon of double descent has recently gained attention in supervised learning. It challenges the conventional wisdom of the bias-variance trade-off by showcasing a surprising behavior. As the complexity of the model increases, the test error initially decreases until reaching a certain point where the model starts to overfit the train set, causing the test error to rise. However, deviating from classical theory, the error exhibits another decline when exceeding a certain degree of over-parameterization. We study the presence of double descent in unsupervised learning, an area that has received little attention and is not yet fully understood. We conduct extensive experiments using under-complete auto-encoders (AEs) for various applications, such as dealing with noisy data, domain shifts, and anomalies. We use synthetic and real data and identify model-wise, epoch-wise, and sample-wise double descent for all the aforementioned applications. Finally, we assessed the usability of the AEs for detecting anomalies and mitigating the domain shift between datasets. Our findings indicate that over-parameterized models can improve performance not only in terms of reconstruction, but also in enhancing capabilities for the downstream task.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2559
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview