HotProtein: A Novel Framework for Protein Thermostability Prediction and EditingDownload PDF

Published: 01 Feb 2023, Last Modified: 23 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: Protein Thermostability, Protein Editing, Dataset, Structure-aware Pre-training, Factorized Sparse Tuning
TL;DR: A new dataset and a novel learning framework for protein thermostability prediction and editing.
Abstract: The molecular basis of protein thermal stability is only partially understood and has major significance for drug and vaccine discovery. The lack of datasets and standardized benchmarks considerably limits learning-based discovery methods. We present \texttt{HotProtein}, a large-scale protein dataset with \textit{growth temperature} annotations of thermostability, containing $182$K amino acid sequences and $3$K folded structures from $230$ different species with a wide temperature range $-20^{\circ}\texttt{C}\sim 120^{\circ}\texttt{C}$. Due to functional domain differences and data scarcity within each species, existing methods fail to generalize well on our dataset. We address this problem through a novel learning framework, consisting of ($1$) Protein structure-aware pre-training (SAP) which leverages 3D information to enhance sequence-based pre-training; ($2$) Factorized sparse tuning (FST) that utilizes low-rank and sparse priors as an implicit regularization, together with feature augmentations. Extensive empirical studies demonstrate that our framework improves thermostability prediction compared to other deep learning models. Finally, we introduce a novel editing algorithm to efficiently generate positive amino acid mutations that improve thermostability. Codes are available in https://github.com/VITA-Group/HotProtein.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Machine Learning for Sciences (eg biology, physics, health sciences, social sciences, climate/sustainability )
Supplementary Material: zip
13 Replies

Loading