Keywords: long-form video understanding, key frame selection, multimodal large language model
TL;DR: a novel scene-driven any-k keyframe selection method for long-form video understanding
Abstract: Multimodal Large Language Models (MLLMs) have demonstrated significant capabilities in image understanding, but long-video are constrained by context windows and computational cost. Uniform frame sampling often leads to substantial information loss. Meanwhile existing keyframe selection methods such as text-frame retrieval or RL-based frame optimization typically yield sparse and temporally disjointed frames, overlooking scene continuity and lacking flexibility for multi-scale frame selection.
To address these limitations, we introduce K-frames, a novel paradigm for scene-driven keyframe selection that preserves temporal continuity. Instead of selecting individual frames, K-frames predicts semantically coherent, query-relevant clips, which enables any-k keyframes selection to meet diverse user budgets. To achieve this approach, we first introduce PeakClips, a dataset of 200K video highlights conditioned by query. Building on this dataset, K-frames learns clip2frame selection using a three-stage progressive curriculum. It involves two Supervised Fine-Tuning stages for temporal grounding and key-clip perception, followed by a Reinforcement Learning stage that directly optimizes the scene-driven prediction policy for downstream task without further annotations. Extensive experiments on major long-video understanding benchmarks demonstrate that K-frames provides an effective, interpretable, and plug-and-play solution for keyframe selection at various scales. Our dataset and model will be available.
Primary Area: foundation or frontier models, including LLMs
Submission Number: 17947
Loading