The Advantage Regret-Matching Actor-CriticDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Blind SubmissionReaders: Everyone
Keywords: Nash Equilibrium, Games, CFR
Abstract: Regret minimization has played a key role in online learning, equilibrium computation in games, and reinforcement learning (RL). In this paper, we describe a general model-free RL method for no-regret learning based on repeated reconsideration of past behavior: Advantage Regret-Matching Actor-Critic (ARMAC). Rather than saving past state-action data, ARMAC saves a buffer of past policies, replaying through them to reconstruct hindsight assessments of past behavior. These retrospective value estimates are used to predict conditional advantages which, combined with regret matching, produces a new policy. In particular, ARMAC learns from sampled trajectories in a centralized training setting, without requiring the application of importance sampling commonly used in Monte Carlo counterfactual regret (CFR) minimization; hence, it does not suffer from excessive variance in large environments. In the single-agent setting, ARMAC shows an interesting form of exploration by keeping past policies intact. In the multiagent setting, ARMAC in self-play approaches Nash equilibria on some partially-observable zero-sum benchmarks. We provide exploitability estimates in the significantly larger game of betting-abstracted no-limit Texas Hold'em.
One-sentence Summary: We introduce ARMAC: generalized Counterfactual Regret Minimization using functional approximations and relying only on outcome sampling.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Supplementary Material: zip
Reviewed Version (pdf): https://openreview.net/references/pdf?id=PdBiY5WHEd
8 Replies

Loading