Keywords: decentralized learning, distributed optimization
Abstract: Decentralized training is often regarded as inferior to centralized training because the consensus errors between workers are thought to undermine convergence and generalization, even with homogeneous data distributions. This work challenges this view by introducing decentralized SGD with Adaptive Consensus (DSGD-AC), which intentionally preserves non-vanishing consensus errors through a time-dependent scaling mechanism. We prove that these errors are not random noise but systematically align with the dominant Hessian subspace, acting as structured perturbations that guide optimization toward flatter minima. Across image classification and machine translation benchmarks, DSGD-AC consistently surpasses both standard DSGD and centralized SGD in test accuracy and solution flatness. Together, these results establish consensus errors as a useful implicit regularizer and open a new perspective on the design of decentralized learning algorithms.
Primary Area: optimization
Submission Number: 20200
Loading