Let the Fuzzy Rule Speak: Enhancing In-context Learning Debiasing with Interpretability

ACL ARR 2025 February Submission807 Authors

11 Feb 2025 (modified: 09 May 2025)ACL ARR 2025 February SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Large language models (LLMs) often struggle with balanced class accuracy in text classification tasks using in-context learning (ICL), hindering some practical uses due to user dissatisfaction or safety risks caused by misclassifications. Retraining LLMs to address root causes in data or model priors is neither easy nor cost-effective. This paper delves deeper into the class accuracy imbalance issue, identifying that it arises because certain classes consistently receive disproportionately high ICL probabilities, causing under-prediction and lower accuracy for others. More importantly, probability ranges affect the imbalance differently, allowing for precise, range-specific corrections. We introduce FuRud (**Fu**zzy **Ru**le Optimization-based **D**ebiasing), a method for sample-level class probability correction. FuRud tackles interpretability challenges by determining why certain classes need corrections and tailoring adjustments for each instance's class probabilities which is powered by fuzzy sets with triangular membership functions, transforming a class probability based on the range it belongs to. By solving a nonlinear integer programming problem with a labeled set of ICL class probabilities to minimize class accuracy bias (COBias) and maximize overall accuracy, each class selects an optimal correction function from 19 triangular membership functions without updating an LLM, and the selected functions correct test instances at inference. Across seven benchmark datasets, FuRud reduces COBias by over half (56%) and improves overall accuracy by 21% relatively, outperforming state-of-the-art debiasing methods.
Paper Type: Long
Research Area: Ethics, Bias, and Fairness
Research Area Keywords: Large language model, class accuracy imbalance, nonlinear integer programming, membership functions, simulated annealing
Contribution Types: Model analysis & interpretability, NLP engineering experiment, Approaches low compute settings-efficiency
Languages Studied: English
Submission Number: 807
Loading