GOttack: Universal Adversarial Attacks on Graph Neural Networks via Graph Orbits Learning

ICLR 2025 Conference Submission12466 Authors

27 Sept 2024 (modified: 13 Oct 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: graphlet, orbit, adversarial machine learning, graph mining, graph convolutional networks, semi-supervised learning
TL;DR: We identify an equivalence group for graph nodes and show that gradient-based attack models predominantly employ the group in their selection.
Abstract: Graph Neural Networks (GNNs) have demonstrated superior performance in node classification tasks across diverse applications. However, their vulnerability to adversarial attacks, where minor perturbations can mislead model predictions, poses significant challenges. This study introduces GOttack, a novel adversarial attack framework that exploits the topological structure of graphs to undermine the integrity of GNN predictions systematically. By defining a topology-aware method to manipulate graph orbits, our approach can generate adversarial modifications that are both subtle and effective, posing a severe test to the robustness of GNNs. We evaluate the efficacy of GOttack across multiple prominent GNN architectures using standard benchmark datasets. Our results show that GOttack outperforms existing state-of-the-art adversarial techniques and completes training in approximately 55% of the time required by the fastest competing model, achieving the highest average misclassification rate in 155 tasks. This work not only sheds light on the susceptibility of GNNs to structured adversarial attacks but also shows that certain topological patterns may play a significant role in the underlying robustness of the GNNs.
Supplementary Material: pdf
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12466
Loading