Slingshot Perturbation to Learning in Monotone Games

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Last-Iterate Convergence, Monotone Game, Learning in Games, Noisy Feedback
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: This paper proposes a framework for online learning algorithms in monotone games, using a "slingshot" strategy to achieve last-iterate convergence.
Abstract: This paper addresses the problem of learning Nash equilibria in *monotone games* where the gradient of the payoff functions is monotone in the strategy profile space, potentially containing additive noise. The optimistic family of learning algorithms, exemplified by optimistic Follow-the-Regularized-Leader and optimistic Mirror Descent, successfully achieves last-iterate convergence in scenarios devoid of noise, leading the dynamics to a Nash equilibrium. A recent emerging trend underscores the promise of the perturbation approach, where payoff functions are perturbed based on the distance from an anchoring, or *slingshot*, strategy. In response, we first establish a unified framework for learning equilibria in monotone games, accommodating both full and noisy feedback. Second, we construct the convergence rates toward an approximated equilibrium, irrespective of noise presence. Thirdly, we introduce a twist by updating the slingshot strategy, anchoring the current strategy at finite intervals. This innovation empowers us to identify the exact Nash equilibrium of the underlying game with guaranteed rates. The proposed framework is all-encompassing, integrating existing payoff-perturbed algorithms. Finally, empirical demonstrations affirm that our algorithms, grounded in this framework, exhibit significantly accelerated convergence.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5384
Loading