Daylight: Assessing Generalization Skills of Deep Reinforcement Learning AgentsDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Blind SubmissionReaders: Everyone
Keywords: deep reinforcement learning, generalization
Abstract: Deep reinforcement learning algorithms have recently achieved significant success in learning high-performing policies from purely visual observations. The ability to perform end-to-end learning from raw high dimensional input alone has led to deep reinforcement learning algorithms being deployed in a variety of fields. Thus, understanding and improving the ability of deep reinforcement learning agents to generalize to unseen data distributions is of critical importance. Much recent work has focused on assessing the generalization of deep reinforcement learning agents by introducing specifically crafted adversarial perturbations to their inputs. In this paper, we propose another approach that we call daylight: a framework to assess the generalization skills of trained deep reinforcement learning agents. Rather than focusing on worst-case analysis of distribution shift, our approach is based on black-box perturbations that correspond to semantically meaningful changes to the environment or the agent's visual observation system ranging from brightness to compression artifacts. We demonstrate that even the smallest changes in the environment cause the performance of the agents to degrade significantly in various games from the Atari environment despite having orders of magnitude lower perceptual similarity distance compared to state-of-the-art adversarial attacks. We show that our framework captures a diverse set of bands in the Fourier spectrum, giving a better overall understanding of the agent's generalization capabilities. We believe our work can be crucial towards building resilient and generalizable deep reinforcement learning agents.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Reviewed Version (pdf): https://openreview.net/references/pdf?id=lVHQV7H1eq
16 Replies

Loading