Abstract: In systems governed by nonlinear partial differential equations such as fluid flows, the design of state estimators such as Kalman filters relies on a reduced-order model (ROM) that projects the original high-dimensional dynamics onto a computationally tractable low-dimensional space. However, ROMs are prone to large errors, which negatively affects the performance of the estimator. Here, we introduce the reinforcement learning reduced-order estimator (RL-ROE), a ROM-based estimator in which the correction term that takes in the measurements is given by a nonlinear policy trained through reinforcement learning. The nonlinearity of the policy enables the RL-ROE to compensate efficiently for errors of the ROM, while still taking advantage of the imperfect knowledge of the dynamics. Using examples involving the Burgers and Navier-Stokes equations, we show that in the limit of very few sensors, the trained RL-ROE outperforms a Kalman filter designed using the same ROM. Moreover, it yields accurate high-dimensional state estimates for reference trajectories corresponding to various physical parameter values, without direct knowledge of the latter.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Machine Learning for Sciences (eg biology, physics, health sciences, social sciences, climate/sustainability )
17 Replies
Loading