SEQZERO: Few-shot Compositional Semantic Parsing with Sequential Prompts and Zero-shot ModelsDownload PDF

Anonymous

16 Jan 2022 (modified: 05 May 2023)ACL ARR 2022 January Blind SubmissionReaders: Everyone
Abstract: Recent research showed promising results on combining pretrained language models (LMs) with canonical utterance for few-shot semantic parsing.The canonical utterance is often lengthy and complex due to the compositional structure of formal languages. Learning to generate such canonical utterance requires significant amount of data to reach high performance. Fine-tuning with only few-shot samples, the LMs can easily forget pretrained knowledge, overfit spurious biases, and suffer from compositionally out-of-distribution generalization errors. To tackle these issues, we propose a novel few-shot semantic parsing method -- SEQZERO. SEQZERO decomposes the problem into a sequence of sub-problems, which corresponds to the sub-clauses of the formal language. Based on the decomposition, the LMs only need to generate short answers using prompts for predicting sub-clauses. Thus, SEQZERO avoids generating a long canonical utterance at once. Moreover, SEQZERO employs not only a few-shot model but also a zero-shot model to alleviate the overfitting.In particular, SEQZERO brings out the merits from both models via ensemble equipped with our proposed constrained rescaling.SEQZERO achieves SOTA performance on GeoQuery dataset and a new EcommerceQuery dataset in the few-shot compositional generalization setting.
Paper Type: long
0 Replies

Loading