Robust Scheduling with GFlowNetsDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: Scheduling, GFlowNets, Combinatorial Optimization
TL;DR: We use GFlowNets for robust scheduling.
Abstract: Finding the best way to schedule operations in a computation graph is a classical NP-hard problem which is central to compiler optimization. However, evaluating the goodness of a schedule on the target hardware can be very time-consuming. Traditional approaches as well as previous machine learning ones typically optimize proxy metrics, which are fast to evaluate but can lead to bad schedules when tested on the target hardware. In this work, we propose a new approach to scheduling by sampling proportionally to the proxy metric using a novel GFlowNet method. We introduce a technique to control the trade-off between diversity and goodness of the proposed schedules at inference time and demonstrate empirically that the pure optimization baselines can lead to subpar performance with respect to our approach when tested on a target model. Furthermore, we show that conditioning the GFlowNet on the computation graph enables generalization to unseen scheduling problems for both synthetic and real-world compiler datasets.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
10 Replies