Communication Efficient Fair Federated Recommender SystemDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Federated Learning, Recommender Systems, Bias and Fairness
TL;DR: A random sampling based Fair Federated Recommender System.
Abstract: Federated Recommender Systems (FRSs) aim to provide recommendations to clients in a distributed manner with privacy preservation. FRSs suffer from high communication costs due to the communication between the server and many clients. Some past literature on federated supervised learning shows that sampling clients randomly improve communication efficiency without jeopardizing accuracy. However, each user is considered a separate client in FRS and clients communicate only item gradients. Thus, incorporating random sampling and determining the number of clients to be sampled in each communication round to retain the model's accuracy in FRS becomes challenging. This paper provides sample complexity bounds on the number of clients that must be sampled in an FRS to preserve accuracy. Next, we consider the issue of demographic bias in FRS, quantified as the difference in the average error rates across different groups. Supervised learning algorithms mitigate the group bias by adding the fairness constraint in the training loss, which requires sharing protected attributes with the server. This is prohibited in a federated setting to ensure clients' privacy. We design \ouralgo, a Random Sampling based Fair Federated Recommender System, which trains to achieve a fair global model. In addition, it also trains local clients towards a fair global model to reduce demographic bias at the client level without the need to share their protected attributes. We empirically demonstrate all our results across the two most popular real-world datasets (ML1M, ML100k) and different sensitive features (age and gender) to prove that RS-FairFRS helps reduce communication cost and demographic bias with improved model accuracy.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
14 Replies

Loading