Quantifying Positional Biases in Text Embedding Models

NeurIPS 2024 Workshop ATTRIB Submission60 Authors

Published: 30 Oct 2024, Last Modified: 14 Jan 2025ATTRIB 2024EveryoneRevisionsBibTeXCC BY 4.0
Release Opt Out: No, I don't wish to opt out of paper release. My paper should be released.
Keywords: Deep Learning or Neural Networks, Similarity and Distance Learning, (Application) Information Retrieval Regression, (Cognitive/Neuroscience) Language, (Other) Statistics
Abstract: Embedding models are crucial for tasks in Information Retrieval (IR) and semantic similarity measurement, yet their handling of longer texts and associated positional biases remains underexplored. In this study, we investigate the impact of content position and input size on text embeddings. Our experiments reveal that embedding models, irrespective of their positional encoding mechanisms, disproportionately prioritize the beginning of an input. Ablation studies demonstrate that insertion of irrelevant text or removal at the start of a document reduces cosine similarity between altered and original embeddings by up to 12.3\% more than ablations at the end. Regression analysis further confirms this bias, with sentence importance declining as position moves further from the start, even with with content-agnosticity. We hypothesize that this effect arises from pre-processing strategies and chosen positional encoding techniques. These findings quantify the sensitivity of retrieval systems and suggest a new lens towards embedding model robustness.
Submission Number: 60
Loading