DBQ-SSD: Dynamic Ball Query for Efficient 3D Object DetectionDownload PDF

Published: 01 Feb 2023, Last Modified: 14 Jul 2024ICLR 2023 posterReaders: Everyone
Abstract: Many point-based 3D detectors adopt point-feature sampling strategies to drop some points for efficient inference. These strategies are typically based on fixed and handcrafted rules, making it difficult to handle complicated scenes. Different from them, we propose a Dynamic Ball Query (DBQ) network to adaptively select a subset of input points according to the input features, and assign the feature transform with a suitable receptive field for each selected point. It can be embedded into some state-of-the-art 3D detectors and trained in an end-to-end manner, which significantly reduces the computational cost. Extensive experiments demonstrate that our method can reduce latency by 30%-100% on KITTI, Waymo, and ONCE datasets. Specifically, the inference speed of our detector can reach 162 FPS on KITTI scene, and 30 FPS on Waymo and ONCE scenes without performance degradation. Due to skipping the redundant points, some evaluation metrics show significant improvements.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/dbq-ssd-dynamic-ball-query-for-efficient-3d/code)
9 Replies