Finite-Time Global Optimality Convergence in Deep Neural Actor-Critic Methods for Decentralized Multi-Agent Reinforcement Learning

Published: 01 May 2025, Last Modified: 18 Jun 2025ICML 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Actor-critic methods for decentralized multi-agent reinforcement learning (MARL) facilitate collaborative optimal decision making without centralized coordination, thus enabling a wide range of applications in practice. To date, however, most theoretical convergence studies for existing actor-critic decentralized MARL methods are limited to the guarantee of a stationary solution under the linear function approximation. This leaves a significant gap between the highly successful use of deep neural actor-critic for decentralized MARL in practice and the current theoretical understanding. To bridge this gap, in this paper, we make the first attempt to develop a deep neural actor-critic method for decentralized MARL, where both the actor and critic components are inherently non-linear. We show that our proposed method enjoys a global optimality guarantee with a finite-time convergence rate of $\mathcal{O}(1/T)$, where $T$ is the total iteration times. This marks the first global convergence result for deep neural actor-critic methods in the MARL literature. We also conduct extensive numerical experiments, which verify our theoretical results.
Lay Summary: Actor-critic methods for decentralized multi-agent reinforcement learning (MARL) facilitate collaborative optimal decision making without centralized coordination, thus enabling a wide range of applications in practice. To date, however, most theoretical convergence studies for existing actor-critic decentralized MARL methods are limited to the guarantee of a stationary solution under the linear function approximation. This leaves a significant gap between the highly successful use of deep neural actor-critic for decentralized MARL in practice and the current theoretical understanding. To bridge this gap, in this paper, we make the first attempt to develop a deep neural actor-critic method for decentralized MARL, where both the actor and critic components are inherently non-linear. We show that our proposed method enjoys a global optimality guarantee with a finite-time convergence rate of $\mathcal{O}(1/T)$, where $T$ is the total iteration times. This marks the first global convergence result for deep neural actor-critic methods in the MARL literature. We also conduct extensive numerical experiments, which verify our theoretical results.
Primary Area: Reinforcement Learning->Multi-agent
Keywords: Fully decentralized multi-agent reinforcement learning, Deep neural network, Finite-time global convergence.
Submission Number: 4055
Loading