Enhancing Language Model Agents using Diversity of Thoughts

Published: 22 Jan 2025, Last Modified: 28 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Models, Reasoning, Programming
Abstract: A popular approach to building agents using Language Models (LMs) involves iteratively prompting the LM, reflecting on its outputs, and updating the input prompts until the desired task is achieved. However, our analysis reveals two key shortcomings in the existing methods: $(i)$ limited exploration of the decision space due to repetitive reflections, which result in redundant inputs, and $(ii)$ an inability to leverage insights from previously solved tasks. To address these issues, we introduce DoT (Diversity of Thoughts), a novel framework that a) explicitly reduces redundant reflections to enhance decision-space exploration, and b) incorporates a task-agnostic memory component to enable knowledge retrieval from previously solved tasks—unlike current approaches that operate in isolation for each task. Through extensive experiments on a suite of programming benchmarks (HumanEval, MBPP, and LeetCodeHardGym) using a variety of LMs, DoT demonstrates up to a $\textbf{10}$% improvement in Pass@1 while maintaining cost-effectiveness. Furthermore, DoT is modular by design. For instance, when the diverse reflection module of DoT is integrated with existing methods like Tree of Thoughts (ToT), we observe a significant $\textbf{13}$% improvement on Game of 24 (one of the main benchmarks of ToT), highlighting the broad applicability and impact of our contributions across various reasoning tasks.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3956
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview