Diffusion Model for Dense Matching

Published: 16 Jan 2024, Last Modified: 15 Mar 2024ICLR 2024 oralEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Diffusion Models, Visual Correspondence
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: The objective for establishing dense correspondence between paired images con- sists of two terms: a data term and a prior term. While conventional techniques focused on defining hand-designed prior terms, which are difficult to formulate, re- cent approaches have focused on learning the data term with deep neural networks without explicitly modeling the prior, assuming that the model itself has the capacity to learn an optimal prior from a large-scale dataset. The performance improvement was obvious, however, they often fail to address inherent ambiguities of matching, such as textureless regions, repetitive patterns, large displacements, or noises. To address this, we propose DiffMatch, a novel conditional diffusion-based framework designed to explicitly model both the data and prior terms for dense matching. This is accomplished by leveraging a conditional denoising diffusion model that explic- itly takes matching cost and injects the prior within generative process. However, limited input resolution of the diffusion model is a major hindrance. We address this with a cascaded pipeline, starting with a low-resolution model, followed by a super-resolution model that successively upsamples and incorporates finer details to the matching field. Our experimental results demonstrate significant performance improvements of our method over existing approaches, and the ablation studies validate our design choices along with the effectiveness of each component. Code and pretrained weights are available at https://ku-cvlab.github.io/DiffMatch.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: generative models
Submission Number: 2370
Loading