Large Language Bayes

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY-NC-ND 4.0
Keywords: bayesian inference, variational inference
Abstract: Many domain experts do not have the time or expertise to write formal Bayesian models. This paper takes an informal problem description as input, and combines a large language model and a probabilistic programming language to define a joint distribution over formal models, latent variables, and data. A posterior over latent variables follows by conditioning on observed data and integrating over formal models. This presents a challenging inference problem. We suggest an inference recipe that amounts to generating many formal models from the large language model, performing approximate inference on each, and then doing a weighted aver- age. This is justified and analyzed as a combination of self-normalized importance sampling, MCMC, and importance-weighted variational inference. Experimentally, this produces sensible predictions from only data and an informal problem description, without the need to specify a formal model.
Primary Area: Probabilistic methods (e.g., variational inference, causal inference, Gaussian processes)
Submission Number: 16531
Loading